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History

A personal view: sputtering of amorphous semiconductors
(Or: How the transistor switched my life)

»1947  Bardeen, Brattain and Shockley invented the transistor
(1956 Nobel Prize awarded)

»1960s Deposition of amorphous semiconductors (a-Ge, a-Si) by evaporation and
sputtering aiming at thin-film electronics: Electronic defects are unsolved problem.

»1971  William Paul (Harvard) proposed hydrogenation of a-Ge for defect passivation
(namely dangling bonds) : a-Ge:H prepared by sputtering

»1975 Spear and LeComber (Dundee) demonstrated n- and p-type doping of
amorphous hydrogenated silicon (a-Si:H) by PECVD

»1980s Intense research on a-Si:H - fundamentals of preparation and characterization,
application to thin film transistors, solar cells and electro-photography (Xerography)

»1990s Preparation of a-Si / metal (SiMal) layered structures

2009-02-03 LKO Uni Erlangen 3



Aim
Why investigating energy fluxes connected to sputter-deposition?

Knowledge about the energy of sputtered atoms (and other species) is useful:

» Deposition of “zero stress” films of refractory metals , which are used as
conductor lines in highly integrated electronics.

» Preparation of smooth surfaces and interfaces for examples in multi-layer
films for x-ray mirrors.

» Ability to prepare dense or nano-porous metal films (fractal dimension of
D_=2.4), which can act as field emitters or catalysts.

» Enhancement or suppression of crystallite growth and the formation of

specific type of texture (for example, c-axis orientation of large AIN grains).
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Structure-zone model for sputtered films

a) Zone 1 Zone 2 Zone 3 a) Evaporated films (Movchan and Demchishin)
R TN o b) Sputtered films (Thornton)
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Z1: TT,, < 0.3 no surface diffusion, initial columns of ~ 30
some 10 nm diam. + voids, amorphous or nano-
crystalline films, columns grow to um diam. at surface
ZT - transition zone: weak surface diffusion due to

bombardment preventing microstructure 1~ 0,1

Z2: T_T_>0.3 strong surface diffusion, columnar

crystallites of um diam. increasing with film thickness Z3: TT >0.5 larger non-columnar crystallites grow,
and temperature smooth surfaces with grooves at boundaries
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Inbensity [&.u.]

Sputtering causes novel effects on thin films !
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The two processes involved: sputtering and transport

» Ar ions recombine, emission of secondary (Auger)
electrons, reflection or penetration of Ar atoms

» Evolution of collision cascade of target ions

» Momentum “reversion”, energy transferred to surface
atom above surface binding energy — ejection of atom

» Collisionless (ballistic) transport: target atoms
conserve full initial kinetic energy (low pressure-
distance product)

» Diffusive transport: multiple collisions of sputtered

atoms result in complete thermalization (high pressure-

distance product)
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The sputtering yield Y

Most “popular” quantity of sputter deposition - Y(E) = sputter-ejected atoms per incident ion: Depends on target
and projectile mass, kinetic and surface binding energy, crystallite orientation, incident angle, roughness AND ...
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Energy of sputtered and reflected atoms

U, - surface binding energy
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Energetic and angular distribution of sputtered and reflected atoms

Cut-off energy is about E__, !
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Estimate of energy input per atom by elemental sputter-deposition

<E> measured by calorimetric method (power
(Ez) = 1,/P, density |,.,) and atomic deposition rate @

/ <E> calculated from quantities resulting from
piasna? ! 4| TRIM.SP forward simulation
U, - surface binding energy

(E,)= U,+(E_)+(E, ) at+(E

<E_> - average energy of sputtered atoms

Emax Emax 4M M
I ~T i i
(Eat) = ff(E)EdE ff(E)dE E_ =k =E, -U,| WthE_, maximum t_ransferred
0 7 (M, + M.,) energy and k =f(M)=0.1 ... 0.4
<E,> - analytical approach (E,) = U’ E”

i yi) RN
<E,>/at - average energy of reflected argon per deposited atom (EAr)/at = /g, — o —=
R\, Rg - Particle und Energy reflection coefficient R, Y
<Ep.me>/at - average plasma irradiation energy per deposited atom 5,33eV
Y - sputtering yield (E pyoma) ! G = 2
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Results: Energy input by elemental sputter-deposition

Comparison of values measured to the results of forward simulation (with the components due to kinetic
energy of the sputtered atoms and reflected argon neutrals and plasma irradiation)
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Results: Energy input by elemental sputter-deposition

Comparison of values measured to the results of forward simulation. The dependence of <E ;> on the atomic
mass (left) is superimposed by the surface binding energy (sublimation enthalpy) of the elements.
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Do YOU know the meaning of the word “sputter” ?

“What is all that sputtering nonsense anyway?”
(from “Glow Discharge Processes” by Brian Chapman)

» a medical and a sputtering conference took place at Imperial College
» the well-known scientific phenomenon: conference system tends towards a

condition of being in the bar

» a well-oiled medic demanded to know: “What is all that ...”

» reply: “Well, we're in a branch of medical profession, too - in speech therapy
actually. Sputtering is like stuttering, except, our chaps say p...p...p instead

of t...t...t
» the medic warmly thanked his newly discovered colleague

“sputter” appeared in English 1598, adapted from the the words “sputteren” (Dutch)
and “sputterje” (West Frisian)

English Dictionary (The Shorter OED 1957):
“To spit out in small particles and with a characteristic explosive sound ... His tongue

was too large for his mouth; he stuttered and sputtered (1878)”
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Experimental
Sputter-deposition

» 90 mm diameter Targets: Al, Si, Ti, V, Cr, Ge, Mo, Ta, W
» Sample sets: variation of pressure p,=0.2 - 7.0 Pa

» Power (typical): Pp.=20 W (low power — 0.3 Wem-2) and
P,c=200 W (high power — 3.1 Wcm?-)

» Substrate-to-target distance of dg;=80 mm

» Substrate Temperature of T,=373 K

» Film thickness of 100 nm and 500 nm, respectively
»_Calorimetric measurements due to sample heating and cooling

» (Gas density reduction measurements

Film characterization

» Film thickness: Talystep instrument and X-ray reflectivity

» Specific gravity: X-ray reflectivity

» Determination of atomic deposition assuming unity sticking probability

2009-02-03 LKO Uni Erlangen 16



Pressure-dependent atomic deposition rates

Throw distance: characteristic decay length of deposition rate as a function of distance from
target at given pressure — more general: consideration of pressure - distance product !

Influence of power ???
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Pressure-dependent flux of sputtered atoms

One-dimensional model by Keller and Simmons

Flux of ballistic atoms ® at substrate:

D, “zero-pressure” flux
pdsy :
©, (pds;) = Py exp-—- J dqr substrate-to-target distance
e p.d, characteristic pressure-distance (throw distance)

Single-step thermalization of ballistic atoms
— source of diffusing thermal atoms of flux @, at substrate:

=)

d
D(pdST) (I) {pod 0 _(1+ pod 0) exp_ p ST}

ST PAgr p,d,

Total atomic flux ® at substrate:

d
®(pd, )=, + D, =D, p;ﬂ{] exp—p;}

ST po [7)
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Throw distances are influenced by multiple parameters
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Atomic mass:

Influence on throw distance is obviously
related to fundamental atomic processes

Sputtering power:

Influence on throw distance is related to
process (apparatus) specific effects

The problem:

To identify and to separate the process-
specific parameters from the effects
measured to obtain general laws.

— Investigation of gas rarefaction

2009-02-03 LKO Uni Erlangen 19



Setup for measuring gas rarefaction (“sputtering wind®)

BARATRON
PROBE

I SUBSTRATE

L

NMGNETRONI

transition range between molecular and pr  J(X)+ ‘/TP /T
viscous flow: the ratio of the pressure values s - F(X)+ 1
at both ends of the tube is described by:

BARATRON
SYSTEM

sputtering chamber and manometer at the tube’s end
a system of two connected vessels each characterized

by a temperature and pressure of pg, Tg and pp, Tp.

, X =dTpP

F(X)=AXI/T ) +B(X/T )+ C(X/T" )", T =(T, +T,)/2

Possible expression of f(x)
with empirical constants
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Raw data: Probe pressure is reduced to system pressure

empirical fit curve:

m
Ap = ps - pp = m3l-exp-(m,pg)} °
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Gas temperature as a function of pressure (sputtering power)

System (gas) temperature calculated from systems pressure and temperature
(ps, Ts) and probe pressure pp. Fit curves according to the analytical model.
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Gas density (normalized) as a function of pressure (power)

From temperature T, measured, gas density n in the heated plasma Ny ﬁ
region is determined (n, and T, gas density, temperature in the “cold”) n, 1,
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One-dimensional model for gas heating

In a sheath of dx around a position x a heating
power P(x) is generated according to loss in
ballistic atoms with average kinetic energy (E,)

Performing the integration of the differential
equation of the one-dimensional steady-state
heat flow:

Boundary conditions:

T=T; (target position, x=0), T=Tg (substrate position x=dg7), determination of c, and c,

d
c,=1; +(EA )(150h

do pP px
P(x)= —E,)—dx = (E —OeX -
(%) ( A>dx (E,) d P 4
p.d px
T(x)=—(E,)®,~—2exp- +C,X+ ¢
Kp 0 0
1 d d
¢, = = "‘<EA>(I)OMGXP—M — Gy}
dST Kp 070
24
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Results of model calculation

Model parameters: throw distance p,d,=20 Pa cm, average kinetic energy (E,)=10 eV,
pressure p=4 Pa, position x=4 cm, atomic flux ®,=2 10"® atoms s cm.
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Vv - a measure of momentum

The velocity persistence v (Jeans 1954)

conservation in initial direction: 0.8
_ _
>
=
O 0.6
@)

-
=
_B L
V2 v, N 0.4 _
O
p
I
Averaging — analytical expression for v D 5o
(sputtered atoms of atomic mass Mg and gas M): .
o
v=]_M+ 2 v,, v,=04, M=% 0.0
I+M I+M M '
- in[ JT+M +JM]+ 2M* + SM° +3M* - M - |

a1+ M) 4M(1+ M)
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Avoiding gas rarefaction, there is a law for the throw distance !
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A simple empirical law for the throw distance !

p,d,[Pacm|=(4.0+ 03)vU,([eV]

o

fairly equivalent to:

p.d,[Pacm]={-1.9 + 0.96 In(M/amu)} U [eV]

The heavier and faster sputtered atoms are, the farer they fly!

(That was, what we already felt ©®®®©)

Thank you for your patience!
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