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History
A personal view: sputtering of amorphous semiconductors
(Or: How the transistor switched my life)

1947 Bardeen, Brattain and Shockley invented the transistor 

(1956 Nobel Prize awarded)
1960s Deposition of amorphous semiconductors (a-Ge, a-Si) by evaporation and 

sputtering aiming at thin-film electronics: Electronic defects are unsolved problem.

1971 William Paul (Harvard) proposed hydrogenation of a-Ge for defect passivation

(namely dangling bonds) :  a-Ge:H prepared by sputtering

1975 Spear and LeComber (Dundee) demonstrated n- and p-type doping of

amorphous hydrogenated silicon (a-Si:H) by PECVD

1980s Intense research on a-Si:H - fundamentals of preparation and characterization, 

application to thin film transistors, solar cells and electro-photography (Xerography)

1990s Preparation of a-Si / metal (SiMal) layered structures
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Aim

Why investigating energy fluxes connected to sputter-deposition?

Knowledge about the energy of sputtered atoms (and other species) is useful:

 Deposition of “zero stress” films of refractory metals , which are used as 

conductor lines in highly integrated electronics.

 Preparation of smooth surfaces and interfaces  for examples in multi-layer 

films for x-ray mirrors.

 Ability to prepare dense or nano-porous metal films (fractal dimension of 

Dm=2.4), which can act as field emitters or catalysts.

 Enhancement or suppression of crystallite growth and the formation of 

specific type of texture  (for example, c-axis orientation of large AlN grains).
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Structure-zone model for sputtered films

Z1:  Ts/Tm < 0.3 no surface diffusion, initial columns of
some 10 nm diam. + voids, amorphous or nano-
crystalline  films, columns grow to µm diam. at surface
ZT - transition zone: weak surface diffusion due to
bombardment preventing microstructure
Z2:  Ts/Tm>0.3 strong surface diffusion, columnar
crystallites of µm diam. increasing with film thickness
and temperature

Z3: Ts/Tm>0.5 larger non-columnar crystallites grow,
smooth surfaces with grooves at boundaries

Ts= substrate temperature
Tm= melting temperature

a) Evaporated films  (Movchan and Demchishin)
b) Sputtered films (Thornton)
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Sputtering causes novel effects on thin films !
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The two processes involved: sputtering and transport
 Ar ions recombine, emission of secondary (Auger)
electrons, reflection or penetration of Ar atoms
 Evolution of collision cascade of target ions
 Momentum “reversion”, energy transferred to surface
atom above surface binding energy → ejection of atom

 Collisionless (ballistic) transport: target atoms
conserve full initial kinetic energy (low pressure-
distance product)
 Diffusive transport: multiple collisions of sputtered
atoms result in complete thermalization (high pressure-
distance product)
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The sputtering yield Y

Most “popular” quantity of sputter deposition - Y(E) = sputter-ejected atoms per incident ion: Depends on target
and projectile mass, kinetic and surface binding energy, crystallite orientation, incident angle, roughness AND ...
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Energy of sputtered and reflected atoms
ƒ (E) =

E

(E +U0)
3+ 2m
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Energetic and angular distribution of sputtered and reflected atoms
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Estimate of energy input per atom by elemental sputter-deposition
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Results: Energy input by elemental sputter-deposition
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Results: Energy input by elemental sputter-deposition
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Part I
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Generation of Atoms
Energy Transport

(low pressure case)
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Transport of Atoms
Throw Distance
Gas Rarefaction
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Do YOU know the meaning of the word  “sputter” ?
“What is all that sputtering nonsense anyway?”

(from “Glow Discharge Processes” by Brian Chapman)

 a medical and a sputtering conference took place at Imperial College
 the well-known scientific phenomenon: conference system tends towards a 

condition of being in the bar
 a well-oiled medic demanded to know: “What is all that …”
 reply: “Well, we’re in a branch of medical profession, too - in speech therapy 

actually. Sputtering is like stuttering, except, our chaps say p…p…p instead
of t…t…t

 the medic warmly thanked his newly discovered colleague

“sputter” appeared in English 1598, adapted from the the words “sputteren” (Dutch)
and “sputterje” (West Frisian)

English Dictionary (The Shorter OED 1957):
“To spit out in small particles and with a characteristic explosive sound … His tongue
was too large for his mouth; he stuttered and sputtered (1878)”
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Experimental
Sputter-deposition
 90 mm diameter Targets: Al, Si, Ti, V, Cr, Ge, Mo, Ta, W
 Sample sets: variation of pressure pAr=0.2 - 7.0 Pa
 Power (typical): PDC=20 W (low power – 0.3 Wcm-2)  and 

PDC=200 W (high power – 3.1 Wcm-2)
 Substrate-to-target distance of dST=80 mm
 Substrate Temperature of Ts=373 K
 Film thickness of 100 nm and 500 nm, respectively
 Calorimetric measurements due to sample heating and cooling
 Gas density reduction measurements

Film characterization
 Film thickness: Talystep instrument and X-ray reflectivity
 Specific gravity: X-ray reflectivity
 Determination of atomic deposition assuming unity sticking probability
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Pressure-dependent atomic deposition rates
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Pressure-dependent flux of sputtered atoms

One-dimensional model by Keller and Simmons

Flux of ballistic atoms ΦB at substrate:
Φ0 “zero-pressure” flux
dST substrate-to-target distance
podo characteristic pressure-distance (throw distance)

Single-step thermalization of ballistic atoms
→ source of diffusing thermal atoms of flux ΦD at substrate:

Total atomic flux Φ at substrate:

!B (pdST) = !0 exp"
pdST

podo

!D(pdST ) = !0{
po do

p dST
" (1+

po do

pdST
) # exp"

pdST

po do
}

! (pdST ) = !B + !D = !0

podo

pdST
{1" exp" pdST

podo
}
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Throw distances are influenced by multiple parameters

101

102

0 50 100 150 200

low power deposition

high power deposition

T
H

R
O

W
 D

IS
T

A
N

C
E

 p
o
d

o
 [

P
a

 c
m

]

TARGET ATOMIC MASS  M

SPUTTER-DEPOSITION
IN ARGON ATMOSPHERE

Atomic mass:

Influence on throw distance is obviously
related to fundamental atomic processes

Sputtering power:

Influence on throw distance is related to
process (apparatus) specific effects

The problem:
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→ Investigation of gas rarefaction
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Setup for measuring gas rarefaction (“sputtering wind“)

pP

pS
=
ƒ (X) + TP /TS

ƒ (X) + 1
, X = dT pP

sputtering chamber and manometer at the tube’s end

a system of two connected vessels each characterized

by a temperature and pressure of pS, TS and pP, TP.

transition range between molecular and
viscous flow:  the ratio of the pressure values
at both ends of the tube is described by:

ƒ (X) = A(X /T
*
)
2
+ B(X /T

*
)+ C(X /T

*
)
1/ 2
, T

*
= (TS + TP) / 2

Possible expression of f(x)
with empirical constants
A, B and C
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 Raw data: Probe pressure is reduced to system pressure
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 Gas temperature as a function of pressure (sputtering power)
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 Gas density (normalized) as a function of pressure (power)
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 One-dimensional model for gas heating

In a sheath of dx around a position x a heating
power P(x) is generated according to loss in
ballistic atoms with average kinetic energy 〈EA〉

P(x) = !"EA #
d$

dx
dx = "EA #

p$O

podo
exp!

px

podo
dx

T(x) = !" E
A
#$

O

p
o
d
o

%p
exp!

px

podo
+ c

1
x+ c

2

Performing the integration of the differential
equation of the one-dimensional steady-state
heat flow:

c
2
= T

T
+ ! E

A
"#

O

p
o
d
o

$p
c1 =

1

dST
{TS + !EA "#O

podo

$p
exp%

pdST

podo
% c2}

Boundary conditions:
T=TT (target position, x=0), T=TS (substrate position x=dST), determination of c2 and c1
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Results of model calculation
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 The velocity persistence ν (Jeans 1954)

Averaging → analytical expression for ν
(sputtered atoms of atomic mass MS and gas MG):
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Avoiding gas rarefaction, there is a law for the throw distance !
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A simple empirical law for the throw distance !

podo Pacm[ ] = 4.0 ± 0.3( ) ! U0 eV[ ]

fairly equivalent to:

podo[Pacm]= {-1.9 + 0.96 ln(M/amu)} U0[eV]

The heavier and faster sputtered atoms are, the farer they fly!

(That was, what we already felt )

Thank you for your patience!


